Cantor Spectrum for a Class of $C^2$ Quasiperiodic Schrödinger Operators

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Absence of Cantor Spectrum for a Class of Schrödinger Operators

It is shown that the complete localization of eigenvectors for the almost Mathieu operator entails the absence of Cantor spectrum for this operator.

متن کامل

Uniform Cantor Singular Continuous Spectrum for Nonprimitive Schrödinger Operators

It is shown that some Schrödinger operators, with nonprimitive substitution potentials, have pure singular continuous Cantor spectrum with null Lebesgue measure for all elements in the respective hulls.

متن کامل

Cantor Singular Continuous Spectrum for Operators along Interval Exchange Transformations

It is shown that Schrödinger operators, with potentials along the shift embedding of Lebesgue almost every interval exchange transformations, have Cantor spectrum of measure zero and pure singular continuous for Lebesgue almost all points of the interval.

متن کامل

On a class of nonlinear fractional Schrödinger-Poisson systems

In this paper, we are concerned with the following fractional Schrödinger-Poisson system:    (−∆s)u + V (x)u + φu = m(x)|u|q−2|u|+ f(x,u), x ∈ Ω, (−∆t)φ = u2, x ∈ Ω, u = φ = 0, x ∈ ∂Ω, where s,t ∈ (0,1], 2t + 4s > 3, 1 < q < 2 and Ω is a bounded smooth domain of R3, and f(x,u) is linearly bounded in u at infinity. Under some assumptions on m, V and f we obtain the existence of non-trivial so...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Mathematics Research Notices

سال: 2016

ISSN: 1073-7928,1687-0247

DOI: 10.1093/imrn/rnw079